Search Results for: fabrice requier

Organisation spatiale des populations d’abeilles mellifères sauvages

Niveau : Master 2 ou 3ème année École Ingénieur

Lieu du stage : UMR EGCE (www.egce.cnrs-gif.fr), campus CNRS de Gif-sur-Yvette (91), 10 minutes à pied du RER B

Encadrement : Fabrice Requier

Période – Durée : 6 mois (2021)

Contexte

En Europe, l’abeille mellifère Apis mellifera présente une double nature comme espèce gérée et espèce sauvage (Requier et al. 2019). Même si les populations sauvages d’A. mellifera constituent une composante menacée de la faune indigène, trop peu d’attention ont été portées sur le suivi de ces populations (Requier & Crewe 2019, Seeley 2019). Néanmoins, des études récentes ont montré que des colonies sauvages d’A. mellifera peuvent être trouvées dans les forêts du nord de la Pologne (Oleksa et al. 2013) et d’Allemagne centrale (Kohl & Rutschmann 2018). Les cavités creusées par des pics ou résultant de la décomposition du bois constituent les principaux sites de nidification de ces colonies sauvages dans les forêts (Requier et al. 2020). D’autres sites de nidifications existent, comme des cavités de roche ou des structures humaines (ex. : cheminées, Canteneur 1982). Cependant, la complexité d’exportation de larges territoires limite à ce jour les connaissances sur l’écologie des colonies sauvages d’abeilles mellifères et empêche l’établissement d’un statu de conservation (IUCN).  

Objectifs

Ce stage vise à étudier l’organisation spatiale des colonies sauvages d’abeilles mellifères dans un territoire, avec un double objectif, fondamental : connaissance sur l’écologie des abeilles, et appliqué : aide à l’exploration du territoire. Pour ce faire, ce stage se fera en deux étapes : (1) sur la base de l’analyse de données existantes de géolocalisation des colonies sauvages d’abeilles mellifères, le/la stagiaire étudiera la distribution spatiale des colonies et testera des hypothèses d’organisations spatiales (compétition, prédation, territorialisme, hybridation, etc.). Les résultats de cette première étape permettront d’affiner un design expérimental d’exploration réduite/orientée du territoire (basé sur la prédiction spatiale de présence de colonies), et d’explorer de nouveaux sites d’études. (2) Le/la stagiaire procédera à l’exploration réduite/orientée de nouveaux sites d’études dans le parc naturel régional de la Haute Vallée de Chevreuse (en forêt de Rambouillet, à 30mins du laboratoire EGCE). L’exploration spatiale consistera en l’observation systématique de cavités (arbres, roches, etc.), description standardisée et géolocalisation, présence/absence de colonie d’abeilles, et échantillonnage d’individus. Les résultats des explorations seront comparés avec les prédictions (issues des données existantes) afin de procéder à des testes de validation croisée.

Références bibliographiques

Canteneur, R. (1982). Bee (Apis mellifera) colonies living in the wild. An epidemiological survey. Abeille de France.

Kohl, P. L., & Rutschmann, B. (2018). The neglected bee trees: European beech forests as a home for feral honey bee colonies. PeerJ, 6, e4602. https://doi.org/10.7717/peerj.4602

Requier, F., Paillet, Y., Laroche, F., Rutschmann, B., Zhang, J., Lombardi, F., Svoboda, F., Steffan-Dewenter, I. (2020) Contribution of European forests to safeguard wild honey bee populations. Conservation Letters, 13, e12693.https://doi.org/10.1111/conl.12693

Requier, F. & Crewe, R.M. (2019) Learning from wild honey bees. Trends in Ecology & Evolution 34(11), 967-968.https://doi.org/10.1016/j.tree.2019.08.002

Requier, F., Garnery, L., Kohl, P.L., Njovu, H.K., Pirk, C.W.W., Crewe, R.M., Steffan-Dewenter, I. (2019) The conservation of native honey bees is crucial. Trends in Ecology & Evolution 34(9), 789-798.https://doi.org/10.1016/j.tree.2019.04.008

Seeley, T. D. (2019). The Lives of Bees: The Untold Story of the Honey Bee in the Wild. Princeton: Princeton University Press.

Compétences requises

– Compétences en analyses statistiques (GLMM) et SIG, maîtrise du logiciel R (www.r-project.org)

– Connaissances en écologie spatiale

– Goût pour la modélisation

– Rigueur, autonomie, sens relationnel

– Maitrise de l’anglais

– Capacités rédactionnelles

– Conditions physiques (mission de terrain)

– Permis B

Gratification et conditions d’accueil

La gratification sera d’environ 580 euros/mois. Le ou la stagiaire sera basé(e) à l’UMR EGCE, campus CNRS de Gif-sur-Yvette. Des missions de terrain seront organisées vers les diverses sites d’étude.

Modalités de candidature

Adresser par voie numérique une lettre de motivation et un CV à Fabrice Requier (fabrice.requier@egce.cnrs-gif.fr).

Suivi automatique du rythme circadien et du risque de mortalité naturelle des abeilles

Niveau : Master 2 ou 3ème année École Ingénieur

Lieu du stage : UMR EGCE (www.egce.cnrs-gif.fr), campus CNRS de Gif-sur-Yvette (91), 10 minutes à pied du RER B

Encadrement : Fabrice Requier et François Rebaudo

Période – Durée : 6 mois (2021)

Contexte

Les progrès récents des dispositifs automatisés de suivi individuel ont révolutionné la collecte de données sur les animaux en conditions naturelles. Par exemple, il est désormais possible de mesurer les activités de déplacement de nombreux animaux sur toute la durée de vie individuelle, y compris pour les abeilles (Requier et al. 2020). Cependant, cette technologie nouvelle est principalement utilisée sur les espèces d’abeilles sociales telles que les abeilles mellifères (Apis mellifera, e.g. Requier et al. 2020), les bourdons (genre Bombus, e.g. Gill & Raine 2014) et les abeilles melipones (tribu Meliponini, Nunes-Silva et al. 2020) pour tester les effets des pesticides et des agents pathogènes sur la longévité des abeilles (Nunes-Silva et al. 2019). À ce jour, seules des méthodes traditionnelles de capture-marquage-recapture sont utilisées sur les abeilles solitaires (e.g. Hofmann et al. 2020), limitant substantiellement la quantité et la qualité des données collectées. Ainsi, des applications persistent quant à l’usage de cette technologie pour étudier l’écologie évolutive des abeilles sociales et solitaires en conditions naturelles, alors que des effets de socialité sont soupçonnés (Wittwer et al. 2017) et que ces informations sont capitales pour étalonner les effets causés par des facteurs de stress (e.g. l’exposition aux pesticides).

Objectifs

En combinant l’utilisation de compteurs d’abeilles et de dispositifs RFID, ce stage vise à étudier le rythme circadien d’activité de vol et le risque de mortalité naturelle des abeilles sociales et solitaires en condition de « plein champ ». Le/la stagiaire mettra en place une expérimentation de suivi automatisé sur le campus du CNRS de Gif-sur-Yvette. Cette étude se focalisera sur Apis mellifera comme espèce sociale et sur Osmia cornuta et Osmia bicornis pour les espèces solitaires. Des cohortes successives d’abeilles seront suivies au cours du temps, des variables de budget-temps seront collectées automatiquement pour chaque abeille et chaque vol, et des variables météorologiques seront également enregistrées. Le package R « aof » sera utilisé pour estimer le risque de mortalité naturelle des abeilles et calculer le rythme circadien à partir des séries temporelles de budget-temps (Requier & Rebaudo 2020). Des modèles statistiques seront développés pour identifier des potentiels facteurs spécifiques et/ou abiotiques (e.g. température) pouvant affecter les rythmes circadiens et les taux de mortalité des différentes espèces et cohortes. 

Références bibliographiques

Gill, R. J., Raine, N. E. (2014) Chronic impairment of bumblebee natural foraging behaviour induced by sublethal pesticide exposure. Functional Ecology, 28, 1459–1471. https://doi.org/10.1111/1365-2435.12292

Hofmann, M. M., Fleischmann, A., Renner, S. S. (2020) Foraging distances in six species of solitary bees with body lengths of 6 to 15 mm, inferred from individual tagging, suggest 150 m-rule-of-thumb for flower strip distances. Journal of Hymenoptera Research, 77, 105–117. https://doi.org/10.3897/jhr.77.51182

Nunes‑Silva, P., Hrncir, M., Guimarães, J. T. F., Arruda, H., Costa, L., Pessin, G., Siqueira, J. O., de Souza, P., Imperatriz‑Fonseca, V. L. (2019) Applications of RFID technology on the study of bees. Insectes Sociaux, 66,15–24. https://doi.org/10.1007/s00040-018-0660-5

Nunes-Silva, P. et al. (2020) Radiofrequency identification (RFID) reveals long-distance flight and homing abilities of the stingless bee Melipona fasciculata. Apidologie, 51, 240–253. https://doi.org/10.1007/s13592-019-00706-8

Requier, F., Henry, M., Decourtye, A., Brun, F., Aupinel, P., Rebaudo, F., Bretagnolle, V. (2020) Measuring ontogenetic shifts in central-place foragers: a case study with honey bees. Journal of Animal Ecology 89, 1860–1871. https://doi.org/10.1111/1365-2656.13248

Requier, F.,Rebaudo, F. (2020) aof: Ontogenetic Shifts in Central-Place Foraging Insects. R package version 0.1.2. https://cran.r-project.org/web/packages/aof/index.html

 Wittwer, B., Hefetz, A., Simon, T., Murphy, L. E. K., Elgar, M. A., Pierce, N. E., Kocher, S. D. (2017) Solitary bees reduce investment in communication compared with their social relatives. Proceedings of the National Academy of Sciences, 114(25), 6569-6574. https://doi.org/10.1073/pnas.1620780114

Compétences requises

– Compétences en analyses statistiques (GLMM), maîtrise du logiciel R (www.r-project.org)

– Connaissances en écologie évolutive et en écologie comportementale

– Goût pour la modélisation

– Rigueur, autonomie, sens relationnel

– Goût pour l’expérimentation de terrain

– Maitrise de l’anglais

– Capacités rédactionnelles

Gratification et conditions d’accueil

La gratification sera d’environ 580 euros/mois. Le stage sera basé à l’UMR EGCE, campus CNRS de Gif-sur-Yvette. Les expérimentations de terrain se dérouleront sur le campus.

Modalités de candidature

Adresser par voie numérique une lettre de motivation et un CV à Fabrice Requier (fabrice.requier@egce.cnrs-gif.fr).

Evolution and Ecology

Our research aims to understand the impact of global changes (anthropogenic and climatic) on insect diversity, abundance and ecology in the context of food security and public health. We are working on insect models with positive impacts on human well-being, such as pollinating insects, edible insects and natural enemies of insect pests, as well as negative impacts such as crop pests and vectors of mammalian parasites. The objectives are to identify the mechanisms underlying the responses of these insects to biotic and abiotic pressures, and to predict the impacts and feedbacks of global change from a management and conservation perspective. The main study sites are located in continental Europe, sub-Saharan Africa and Latin America.

Our locations and partnerships:

implantations

Four main research areas are developed within our pole:

  1. Ecology of insects with production or conservation concerns: changes in land use and climate change can affect the abundance, richness and diversity of insect populations with production or conservation concerns. In this context, we study the ecology of edible insects, the ecology of bees through experimental and empirical approaches as well as the impact of exotic pests on native insect populations, including parasitoids, and on native prey populations (Asian hornet – honey bee interaction).
  2. Adaptation of insects to anthropogenic environments: certain anthropogenic actions lead to the reduction of natural habitats and the invasion of species that can affect agriculture and human health. In particular, we are studying host adaptation in parasitoids used in biological control, the evolution of diet adaptation in predators such as Coccinellidae, and the domiciliation processes of insect vectors of diseases.
  3. Modelling the response of insects to global changes: in a context of global change, it is difficult to have models for predicting the individual and population response of insects. To address this, we model insect phenology (e.g. crop pests) and the spatio-temporal dispersal of insect populations based on experimental or participatory data on climate, landscape and cropping practices. We also use modelling in combination with field data as a decision support tool for environmental management and for the analysis of complex scenarios to be tested in the field such as the combination of multiple stresses.
  4. Functional role of insects in agroecosystems: through their ecological functions, insects determine the dynamic balance of ecosystems. These services and dis-services are key to food security and human health. We study their resilience by jointly analysing the pollination services provided by insects and the dis-services related to pests in agricultural and anthropised systems.

Methodologies:

  • Field studies
    • Survey of land use and landscape structure
    • Long-term monitoring of populations
    • Monitoring of insect movements in natura
    • Field experiments and controlled conditions
    • Participatory data collection through digital cooperation
  • Population genetics
    • Mitochondrial and nuclear gene analysis
    • Microsatellite locus analysis
    • RADseq (Restriction site Associated DNA sequencing)
    • Environmental demogenetics
  • Genomics and transcriptomics
    • High-throughput DNA and RNA sequencing
    • LC-MS-MS analyses (proteomics)
  • Behaviour and Electrophysiology
    • Monitoring of insect behaviour by olfactometry and video recording
    • Automatic monitoring (RFID) of insect ontogeny
    • Extracellular olfaction and gustation
  • Modelling and Bioinformatics
    • Statistical models for demogenetic inference
    • Mechanistic models
    • Individual-centred and Bayesian models
    • Genome and transcriptome analysis, search for QTLs,…
Campus CNRS de Gif-sur-Yvette
DEEIT_PAGE_ID_MougelHéloïse Bastide, Professor, Paris-Sud 11. DEEIT_PAGE_IDPaul-André Calatayud, Research Scientist, IRD.
Interactions between plants, insect pests and parasitoids. Involved in research axes 1, 2 and 3.
DEEIT_PAGE_ID_CapdevielleDulacClaire Capdevielle-Dulac, Engineer, IRD.
Development and analysis of molecular markers.
DEEIT_PAGE_ID_CartonYves Carton, Senior Research Scientist Emeritus, CNRS.
History of biological sciences, concerning entomology, Darwinism and innate immunity.
Lionel Garnery, Professor, Université Versailles Saint-Quentin en Yvelines.
DEEIT_PAGE_ID_HarryMyriam Harry, Professor, Paris-Saclay.
Phylogenomics and genomics of insect vectors, domiciliation processes.
DEEIT_PAGE_IDRémi Jeannette, Technician, IRD.
DEEIT_PAGE_ID_KaiserLaure Kaiser-Arnauld, Senior Research Scientist, CNRS.
Interactions between insect pests and parasitoids and their use in biological control.
DEEIT_PAGE_ID_LegallPhilippe LeGall, Research Scientist, IRD.
Ecology of edible insects.
Hélène, Legout, Engineer, CNRS.
Development and implementation of techniques in molecular biology and eco-ethology, mainly involved in research axis 1.
Taiadjana Marques Fortuna, Engineer, IRD.
Plant-insect interactions (pests and parasitoids) in the context of biological control. Involved in research axis 2.
Hubert Marteau, Technician, IRD.
Marie Merle, PhD student, Université Paris-Saclay, France.
Involvement of chemosensory receptors in the domiciliation process of a Chagas disease vector. Involved in research axis 2.
Isabelle Merle, postDoc, IRD.
Pollination service provided by insects in cocoa production.
Étienne Minaud, PhD student, ABIES, France.
Ecology of the honey bee.
Alice Michel-Salzat, Professor, Université Paris Diderot.
Evolution of the adaptation of the diet of predators such as Coccinellidae.
DEEIT_PAGE_ID_MougelFlorence Mougel, Professor, Paris-Saclay.
Genetic and genomic approaches to insect adaptation.
François Rebaudo, Engineer, IRD.
Insect responses to climate change.
Baptiste Régnier, PhD student, ABIES, France.
Modelling the phenology of crop pests in tropical agro-ecosystems.
Fabrice Requier, Research Scientist, IRD.
Bee ecology and pollination service.
Stéphane Aumasson, Technician, CNRS.
Malena Sibaja Leyton, PhD student, ED ABIES, AgroParisTech, France.
Response of social bees to anthropogenic pressures.
Clémence Riva, postDoc, IRD.
Pollination service provided by bees.
Sacha Revillon, PhD student, ED SDSV, Université Paris-Saclay, France.
Role of the phenology of plants and their pests on their interactions.
Samuel Gornard, PhD student, ED Sciences de la nature et de l’Homme : évolution et écologie, MNHN, France.
Genetic and physiologic elements implied in the virulence differentiation in two strains of the parasitoid wasp Cotesia typhae.
Universidad de Los Andes
DEEIT_PAGE_ID_DupasStéphane Dupas, Research Scientist, IRD.
Environmental demogenetics of insects and plant diseases and enhancement of ecosystem services provided by agroecology, through participatory systems.
DEEIT_PAGE_IDCamilo Patarroyo, PhD student, UniAndes, Colombie.
Environmental demogenetics of insects and plant diseases and valuing the ecosystem services provided by agroecology, through participatory systems.
ICIPE
DEEIT_PAGE_IDNuambote, Ovide Yobila, PhD student, ABIES AgroParisTech, France.
Mechanisms of maize resistance to an exotic pest. Involved in research axis 1.
Bonoukpoè Mawuko, Sokamé, postDoc, ICIPE, Kenya.
Yield losses of maize due to insect pests in a context of climate change. Involved in research axis 1.

PhD manuscripts of the students trained since 2004:

2004- Kergoat Gaël J. – The Bruchidius genera (Coleoptera, Bruchidae): a model to study the evolutionary relationships between insects and plants.

2006- Sezonlin Michel – Phylogeography and population genetic of the cereal stem borer Busseola fusca (Lepiudoptera: Noctuidae), in sub-Saharan Africa, impact for the biological control of this insect.

2008- Chabaud Marie-Ange – Developement of appetitive conditionings and analysis of individual and group memory performances in appetitive and aversive contexts in Drosophila.

2008- Félix Anne-Emmanuelle – Chemical ecology and phylogenetic approaches in three African Lepidoptera species of genus Busseola (Noctuidae).

2009- Branca Antoine – Ecological diversification of the African parasitoid Cotesia sesamiae : role of symbiotic partners.

2009- Mailafiya Duna Madu – Diversity and ecological preference of parasitoids associated with lepidopteran stem borers in Kenya.

2009- Ong’amo George Otieno – Diversity, Ecology and population dynamics of lepidopteran stem borers in Kenya.

2010- Juma Gérald – Basis of host plant recognition and acceptance by Busseola fusca larvae (Lepidoptera: Noctuidae).

2010- Meshack Obonyo Amos Awino – Basis of host recognition by the larval endoparasitoids: Cotesia sesamiae Cameron et Cotesia flavipes (Cameron) (Hymenboptera: Braconidae).

2011- Quartier Marion – Study of the impact of anthropization on the evolutionary ecology of the vectors of Chagas disease, case of three communities of Tapajós in the Brazilian Amazon.

2010- Torres-Leguizamon Magaly – Genetical study of Tecia Solanivora (Povolny 1973).

2012- Crespo-Perez Veronica – Global changes and distribution modeling of invasive insect pests in the Tropical Andes.

2012- Rebaudo François – Spatio-temporal modeling of pests dynamics in social-ecological systems.

2013- Bertrand Bénédicte – Analysis of the genetic diversity of bee populations of the West-Mediterranean lineage of bees (Apis mellifera mellifera): Application to conservation.

2013- Glaser Nicolas – Contribution of the chemical senses to new environment : a transcriptomic study in the stemborer Sesamia nonagrioides (Lepidoptera : Noctuidae).

2013- Chardonnet Floriane – Role of the foraging gene in the evolution of the feeding behaviour of the noctuid cereal stemborers.

2015- Faye Emile – Thermal landscapes and pest dynamic in Andean tropical agrosystems.

2015- Petit Christophe – Induction of olfactory and gustatory preferences by cereal lepidopteran stem borers in East Africa: effect of pre-imaginal and imaginal experiences.

2016- Marchant Axelle – The process of domiciliation of hematophagus bugs vectors of Chagas disease: contribution of the chemosensory transcriptome study.

2018- Arnauld Becheler – Environmental demogenetic model.

2019- Benoist Romain – Behavioural, physiological and genetic basis of the reproductive success of a hymenopteran parasitoid.

2020- Bichang’a Gladys – Biochemical and molecular aspects of host recognition and acceptance by Cotesia spp. populations in coastal and western Kenya.

2020- Bonoukpoè Sokame – Functioning of a community of lepidopteran maize stemborers and associated parasitoids following the fall armyworm invasion in Kenya.

This entry was posted on 14 November 2014, in .

Grants

EGCE teams have diversified grants apart from ANR.

In the Ecology Department, Fabrice Réquier received an European ERA-NET funding (ICT-AGRI-Food) for his project Bee-Connected (01/2021-12/2023)

In the Behaviour Department, Jean-Christophe Sandoz  received a grant from Fondation de France for the Molybee project (05/2019- 05/2020).

DEEIT team (Myriam Harry) received a grant from INRA for the Dynamiques project (2016-2020). This team (Olivier Dangles) also received a grant from FRB-FFEM for the BioTHAW project (2012 – 2018), a grant from the Mc Knight Foundation for the project LEGUMIP (2017 – 2019) and a grant  from AFD for the project CHALPI-FLOW (2017 – 2018).

PACS team (Frédéric Marion-Poll) received a grant from the COMUE from University Paris-Saclay for his project IDI 2017 (2017 – 2020).

Lionel Garnery ( Ecologie department) received a grant from Région Normandie for the project Apinoire Normandie (20/03/2019- 30/03/2022).

This entry was posted on 20 March 2014, in .

Lab history

A tought for Michel Solignac

LEGS background

Creation

The origins of the laboratory

In 1946, the CNRS was looking for a site to set up research laboratories in a quiet setting not too far from Paris and with practical transport access. Gif seemed like the ideal place. Frédéric Joliot-Curie, then at the head of the new CNRS, was friends with Jacques Noetzlin, a physician and the owner of a château, but who was looking to sell his estate. Both had been taught physics by Jean Perrin. On 3 June 1946, the CNRS bought the château and the 67-hectare estate. The first three laboratories set up on the campus were linked to the Life Sciences and were exclusively dedicated to genetics, a discipline that had not yet found a place in universities at the time.

The first laboratory to start work in Gif was headed by Philippe L’Héritier, in 1951. It was a formal genetics laboratory studying the heritability of sensitivity to CO² in drosophila as a result of a virus. The laboratory was soon followed by Georges Teissier’s, our own laboratory, originally known as the “Evolutive Genetics and Biometrics Laboratory”, and focused on population genetics. However, G. Teissier’s laboratory remained in an embryonic state until Charles Bocquet took charge over in 1966. Bocquet broadened the unit’s contribution to the study of natural populations and speciation, using two model organisms, the Jaera, a crustacean, and drosophila. The approach of the founding fathers was continued under the leadership of Jean David (1980-1992), with the introduction of new elements for study (bees, drosophila parasites: transposable elements or parasitoid insects), along with some new themes. Jean-Marc Jallon’s team was set up at the laboratory in 1985 to work on cuticular hydrocarbons and sexual recognition in drosophila, before they joined the University of Orsay in 1989. Since then, the development of new techniques has helped to forge a more molecular approach to the different themes. Thanks to the drosophila scientists of the second and even the third generation after G. Teissier and C. Bocquet, our laboratory, from 1993 known as “Populations, Genetics, Evolution” and led by Marie-Louise Cariou (1993-2005), has remained in the forefront of research into evolution. With the aim of fostering an active exchange of skills, the laboratory welcomed an INRA team from 1993 to 1998 (Jean-Yves Rasplus), before it moved to Montpellier. In 2001, this sense of coherence with applied research was shown to the full when the IRD unit (UR072) was set up by Jean-François Silvain in the same laboratory. The unit works closely with countries in the South (Africa and Latin America) on plant-herbivore-parasitoid relations in tropical habitats. The team studies interactions between species in nature, considerably reinforcing the laboratory’s commitment to understanding adaptation mechanisms and the differentiation of populations, especially in Africa.

The laboratory’s dynamism is shown both in the evolution of its themes and of its techniques. For some ten years now, the laboratory has encouraged young researchers to join the team, helping to enrich and broaden its range of skills. In 2002, an Evo-Devo team (Didier Casane, ATIPE and ATIPE plus CNRS) arrived, using the zebrafish and the small-spotted catshark as its main models, and studying the molecular and functional evolution of multigenic families. More recently, research linked to the cognitive capacities of drosophila has been developed thanks to the recruitment of Frédéric Méry (2005, ATIPE, ERC young researcher). In 2006, the laboratory was renamed the “Evolution, Genomes and Speciation laboratory” and was headed by Pierre Capy, a Professor at the University of Orsay. The laboratory’s contract was renewed for four years in 2010, and it began to develop aspects of theoretical biology, simulation and modelling thanks to the recruitment of Arnaud Le Rouzic (2009, European Reintegration Grant).

On 1 January 2015, LEGS was replaced by the Evolution, Genomes, Behaviour and Ecology laboratory (EGCE), led by Catherine Montchamp-Moreau. Two team managers arrived: Nicolas Pollet developed the comparative and evolutive study of the complexity of the genome structure in amphibians, while Frédéric Marion-Poll looked at the role of chemical signals from food in the adaptation of insects to their environment. A. Michel-Salzat (EC Paris Diderot) joined D. Casane’s team.

On 1 January 2020, a new management team arrived at EGCE: Laure Kaiser-Arnauld was elected director and Jean-Christophe Sandoz deputy director. New members joined the laboratory: Héloïse Bastide (EC), Amir Yassin (CR CNRS) and Fabrice Requier (CR IRD), who studied the resilience of pollinators and the positive role of pollination in the context of global changes. The engineering and technical team was expanded, with Virginie Larcher (AI CNRS) and Laurent Legendre (IE CNRS) joining the laboratory. In all, EGCE now has 48 permanent members.

Structural evolution of the laboratory

Ties with the IRD team were strengthened with the merger of two units on 1 January 2015.  From a scientific viewpoint, real interactions and collaboration resulted, as can be seen in shared projects, with publications and organisation of symposia. They developed shared themes, such as the study of biological invasions, where conceptual breakthroughs have already been made. Part of the unit is based in Gif, but premises overseas (Kenya, Cameroon and Ecuador) provide laboratory researchers with field access in Africa and South America.

Since 2006, 14 researchers and lecturer-researchers have joined the unit after recruitment or for specific assignments: C. Wicker (CNRS), J. Rouault (CNRS), J. Filée (CNRS), J.C. Sandoz (CNRS), F. Méry (CNRS), A. Le Rouzic (CNRS), M. Harry (Professor at Paris Sud 11), L. Kaiser (CNRS), P.A. Calatayud, (IRD), B. Le Ru (IRD), O. Dangles (IRD), R. Pasquet (IRD), N. Pollet (CNRS), F. Marion-Poll (Professor at AgroParisTech), with a total of 19 researchers (CNRS, IRD) and 12 lecturer-researchers on 1/1/2015. In February 2020, there were 20 researchers (CNRS+IRD) and 11 lecturer-researchers with the arrival of C. Gilbert, H. Bastide, A. Michel-Salzat, F. Requier and A. Yassin.

Closer links with the university

A closer association with universities has developed over the past few years, especially with Paris-Sud University in Orsay, which has come under our administrative supervision through the creation of joint research units. This is shown in the increase in the number of lecturer-researchers (12) in the unit. The lecturer-researchers work with three universities (Paris-Saclay, University of Paris, Versailles-Saint Quentin). The laboratory’s lecturer-researchers have more and more responsibilities in the different university bodies, especially in doctoral schools and, in return, researchers devote more time to teaching.

The efforts to provide a structure to the community of “evolutionists” on the GIF and Orsay campuses took shape with the setting up of the Diversity Ecology and Evolution of Life Institute (IDEEV), a project in which the unit was a driving force. The IDEEV, created on 1 January 2010, brings together the three founding laboratories and different teams belonging to laboratories on the two campuses and the INRA.

This entry was posted on 19 March 2014, in .