Archives

Taiadjana, Fortuna

Research engineer / postdoc IRD, DEEIT team

PhD, 2013, University of Wageningen, The Netherlands

Tel. +33 (0)1 69 82 37 48

taiadjana.fortuna[at]egce.cnrs-gif.fr  //  taiadjana.marquesfortuna[at]ird.fr

Research interests

I’m an ecologist interested on the interactions between plants and their associated insect communities (herbivores, parasitoids etc.) and pathogens.

During my PhD, I focused on PLANT-INSECT interactions on the context of PLANT INVASION in order to understand some of the key factors underlying the invasive ability of certain plant species. During my postdoc, I focused on PLANT-FUNGI interactions to study multiple infections and within-host competition of the anther-smut fungi, responsible for castrating its host.

One of my research interests relates to insect behaviour and to the mechanisms underlying host selection and acceptation by Lepidoptera (e.g. moths and butterflies) and Hymenoptera parasitic wasps. During my formation, I have developed a taste for CHEMICAL ECOLOGY, particularly the cues (e.g. volatiles, contact cues) used by insects during their host searching behaviour. This knowledge is essential to evaluate the efficiency of weed and crop pest BIOLOGICAL CONTROL programs.

Now working in DEEIT team, I am conducting the risk assessment for non-target species of a stemborer parasitoid to evaluate the feasibility of using the parasitoid as a new biological control agent against the Mediterranean corn borer (ANR project COTEBIO).

Publications

[10] Fortuna TM, Namias A, Snirc A, Branca A, Hood ME, Raquin C, Shykoff JA & Giraud T (2018) Multiple infections, relatedness and virulence in the anther-smut fungus castrating Saponaria plants. Molecular Ecology, 27(23): 4947-4959.

[9] Fortuna TM, Snirc A, Badouin H, Gouzy J, Siguenza S, Le Prieur S & Giraud T (2016) Polymorphic microsatellite markers for the tetrapolar anther-smut fungus Microbotryum saponariae based on genome sequencing. PLoS One 11(11): e0165656.

[8] Fortuna TM, Eckert S, Harvey JA, Vet LEM, Müller C, Gols R (2014). Variation in plant defences among populations of a range-expanding plant: consequences for trophic interactions. New Phytologist 204(4): 989-999.

[7] van Geem M, Gols R, van Dam NM, van der Putten WH, Fortuna T & Harvey JA (2013). The importance of aboveground-belowground interactions on the evolution and maintenance of variation in plant defence traits. Frontiers in Plant Science 4(431): 1-13.

[6] Fortuna TM, Woelke JB, Hordijk CA, Jansen JJ, van Dam NM, Vet LEM & Harvey JA (2013). A tritrophic approach to the preference-performance hypothesis involving an exotic and a native plant. Biological Invasions 15(11): 2387-2401.

[5] Fortuna TM, Harvey JA & Vet LEM (2012). Effects of an invasive plant on the performance of two parasitoids with different host exploitation strategies. Biological Control 62(3): 213-220.

[4] Harvey JA & Fortuna TM (2012) Chemical and structural effects of invasive plants on herbivore–parasitoid/predator interactions in native communities. Entomologia Experimentalis et Applicata 144(1): 14-26.

[3] Franco JC, Fortuna T, Silva EB, Suma P, Russo A, Zada A & Mendel Z (2011) Vine mealybug sex pheromone increases citrus mealybug parasitism by Anagyrus sp. near pseudococci (Girault). Biological Control 58(3): 230-238.

[2] Harvey JA, Biere A, Fortuna T, Vet LEM, Engelkes T, Morriën E, Gols R, Verhoeven Koen, Vogel H, Macel M, Heidel-Fischer HM, Schramm K & Putten WH (2010). Ecological fits, misfits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biological Invasions 12(9): 3045–3059.

[1] Bezemer TM, Harvey JA, Kamp AFD, Wagenaar R, Gols R, Kostenko O, Fortuna T, Engelkes T, Vet LEM, Putten WH & Soler R (2010). Behaviour of male and female parasitoids in the field: influence of host density, patch size and habitat complexity. Ecological Entomology 35(3): 341–351.

Other publications

[5] Fortuna TM, Franco JC & Rebelo MT (2015) Morphology and distribution of antennal sensilla in a mealybug parasitoid, Anagyrus sp. near pseudococci (Hymenoptera, Encyrtidae). Microscopie and Microanalysis 21 (S6): 8-9.

[4] Fortuna TM (2014) Multitrophic Interactions on a Range-expanding Plant Species. Entomologische Berinchten 74 (3): 4-5.

[3] Fortuna TM (2013) Multitrophic Interactions on a Range-expanding Plant Species. (PhD thesis, University of Wageningen).

[2] Silva EB, Fortuna T, Franco JC, Campos L, Branco M, Zada A & Mendel Z (2009) Kairomonal response of a parasitic wasp to the sex pheromone of the vineyard mealybug. IOBC wrps Bulletin 41: 79-82.

[1] Franco JC, Fortuna T, Silva EB, Suma P, Russo A, Campos L, Branco M, Zada A & Mendel Z (2008) May vine mealybug sex pheromones improve the biological control of the citrus mealybug? IOBC wprs Bulletin 38: 94-98.

Baptiste Régnier

PhD student
Email: baptiste.regnier@universite-paris-saclay.fr

Subject: Modeling insect pests phenology in tropical agro-ecosystems


Abstract:

While we are observing a decline in insect biodiversity due to global changes and in particular global warming, some species of insect pests are increasingly present and threaten food security in inter-tropical regions. This is the case of maize pests in East Africa. It is therefore relevant to develop models to optimize and contribute to sustainable pest control methods in agro-ecosystems. In addition, in the context of global warming, a quantification of the relationship between insect development and temperature is essential to understand the influence of temperature changes on insect development and in particular on crop pests. Although many laboratory data are available on the insect response to temperature, an adjustment is needed for their use under field conditions. Thus, the objective of this PhD is to analyze the existing literature to propose common and shared modeling practices, to build models to assess the potential impacts of temperature increases on pest development, and finally to design and deploy a network of sensors and insect tracking, and then to analyze the time series obtained to understand the spatio-temporal dynamics and develop phenological models for crop pest species in the intertropical zone.


Productions:

Régnier, B., Legrand, J., Rebaudo, F., 2022. Modeling Temperature-Dependent Development Rate in Insects and Implications of Experimental Design. Environmental Entomology 51, 132–144. https://doi.org/10.1093/ee/nvab115

Rebaudo F., Régnier B. (2022). devRate: Quantify the Relationship Between Development Rate and Temperature in Ectotherms. R package version 0.2.2, https://CRAN.R-project.org/package=devRate.

Fabrice, Requier

Researcher
Agroecology, ecosystem services, pollinator ecology, biodiversity conservation
Phone: +33 (0)1 69 82 37 50
Email: fabrice.requier@egce.cnrs-gif.fr
Skype: fabrice.requier
ORCID
Researchgate
Citation Google Scholar
Scopus
Publons

See more details (Curriculum Vitae, Team, Projects) here: https://sites.google.com/site/mrequierfabrice

Research

My research focuses on pollinator responses to changes in landscape structure, exposures to agrochemicals and pressures from (invasive) biotic factors, and the subsequent implications for biological conservation and ecosystem services. For this I generally combine the use of lab experiments, field monitoring and modelling techniques, and I have growing interest in inclusive socio-ecological approaches. My work is oriented towards applied perspectives including the development of decision-support tools for informing environmental policies and stakeholders.

Editorial Activity

Editorial Board:

Associate Editor of the Journal of Applied Ecology (since January 2018)

Revierwer activities:

Agriculture, Ecosystems & Environment; Agronomy for Sustainable Development; Biological Conservation; Diversity; Ecology; Ecology and Evolution; Global Ecology & Conservation; Journal of Applied Ecology; Journal of the Royal Society Interface; Landscape Ecology; Landscape and Urban Planning; Nature Food; Population Ecology; Oecologia; Royal Society Open Science; Scientific Reports

Publications

[2022]

Sponsler, D.B., Requier, F., Kallnik, K., Claßen, A., Maihoff, A.F., Sieger, J., Steffan-Dewenter, I. (2022) Contrasting patterns of richness, abundance, and turnover in mountain bumble bees and their floral hosts. Ecology 103(7), e3712. https://doi.org/10.1002/ecy.3712

Panziera, D., Requier, F., Chantawannakul, P., Pirk, C., Blacquière, T. (2022) The diversity decline in wild and managed honeybees urges for an integrated conservation approach. Frontiers in Ecology and Evolution 10, 767950.https://doi.org/10.3389/fevo.2022.767950

Merle, I., Hispólito, J., Requier, F. (2022) Towards integrated pest and pollinator management in tropical crops. Current Opinion in Insect Science 50:100866. https://doi.org/10.1016/j.cois.2021.12.006

Parreño, M.A., Alaux, C., Butschkau, S., Buydens, L., Filipiak, M., Henry, M., Kuhlmann, M., Leroy, C., Meeus, I., Requier, F., Ruedenauer, F., Smagghe, G., Stevenson, P.C., Keller, A., Klein, A-M., Palmer-Young, E., Piot, N., Leonhardt, S.D. (2022) Critical links between biodiversity and health in wild bee conservation. Trends in Ecology and Evolution 37(4), 309-321.https://doi.org/10.1016/j.tree.2021.11.013

Sponsler, D.B., Kallnik, K., Requier, F., Claßen, A., Maihoff, A.F., Sieger, J., Steffan-Dewenter, I. (2022) Floral preferences of mountain bumble bees are constrained by functional traits but flexible through elevation and season. Oikos e08902. https://doi.org/10.1111/oik.08902

Barascou, L., Requier, F., Sené, D., Crauser, D., Le Conte, Y., Alaux, C. (2022) Delayed effects of a single dose of a neurotoxic pesticide (sulfoxaflor) on honeybee foraging activity. Science of the Total Environment 805:150351. https://doi.org/10.1016/j.scitotenv.2021.150351

[2021]

Parejo, M., Requier, F., Invernizzi, C., Aldea-Sánchez, P., Basualdo, M., Brodschneider, R., Correa-Benítez, A., Guzman-Novoa, E., Pirk, C.W.W., Steinhauer, N., Velarde, R., Neumann, P., Antunez, K. (2021) Joining Forces across Continents: The 1st SOLATINA–COLOSS Conference. Bee World 99(2), 68-71. https://doi.org/10.1080/0005772X.2021.2011044

Villagomez, G. Nürnberger, N., Requier, F., Schiele, S., Steffan-Dewenter, I. (2021) Effects of temperature and photoperiod on the seasonal timing of Western honey bee colonies and an early spring flowering plant. Ecology and Evolution 11(12), 7834-7849. http://doi.org/10.1002/ece3.7616

Mayr, A.V., Requier, F., Peters, M.K., Steffan-Dewenter, I. (2021) Seasonal variation in the ecology of tropical cavity-nesting Hymenoptera on Mt. Kilimanjaro. Frontiers in Biogeography 13.3, e49389. https://doi.org/10.21425/F5FBG49389 

Chabert, S., Requier, F., Chadoeuf, J., Guilbaud, L., Morison, N., Vaissière, B.E. (2021) Rapid measurement of the adult worker population size in honey bees. Ecological Indicators, 122, 107313.  https://doi.org/10.1016/j.ecolind.2020.107313

Le Provost, G., Badenhausser, I., Violle, C., Requier, F., D’Ottavio, M., Roncoroni, M., Gross, L., Gross, N. (2021) Grassland-to-crop conversion in agricultural landscapes has lasting impact on the trait diversity of bees. Landscape Ecology 36, 281–295.https://doi.org/10.1007/s10980-020-01141-2 

[2020]

Prado, A.*, Requier, F.*, Crauser, D., Le Conte, Y, Bretagnolle, V., Alaux, C. (2020) Honeybee lifespan: the critical role of pre-foraging stage. Royal Society Open Science, 7, 200998. https://doi.org/10.1098/rsos.200998 [*Equal contribution]

Requier, F., Henry, M., Decourtye, A., Brun, F., Aupinel, P., Rebaudo, F., Bretagnolle, V. (2020) Measuring ontogenetic shifts in central-place foragers: a case study with honey bees. Journal of Animal Ecology 89, 1860–1871. https://doi.org/10.1111/1365-2656.13248

Requier, F., Jowanowitsch, K.K., Kallnik, K., Steffan-Dewenter, I. (2020) Assessing resource limitation in bumble bee ecology. Bulletin of the Ecological Society of America 101(2):e01675. https://doi.org/10.1002/BES2.1675

Pérez-Méndez, N., Andersson, G.K.S., Requier, F., Hipólito-Sousa, J., Aizen, M., Morales, C., García, N., Gennari, G., Garibaldi, L.A. (2020) The economic cost of losing native pollinator species for orchard production. Journal of Applied Ecology 57(3), 599-608. https://doi.org/10.1111/1365-2664.13561

Requier, F., Jowanowitsch, K.K., Kallnik, K., Steffan-Dewenter, I. (2020) Limitation of complementary resources affects colony growth, foraging behavior and reproduction in bumble bees. Ecology 101(3):e02946. https://doi.org/10.1002/ecy.2946

Requier, F., Andersson, G.K.S., Oddi, F., Garibaldi, L.A. (2020) Citizen science in developing countries: how to improve volunteer participation. Frontiers in Ecology and the Environment 18(2), 101-108. https://doi.org/10.1002/fee.2150

Requier, F., Fournier, A., Rome, Q., Darrouzet, E. (2020) Science communication is needed to inform risk perception and actions of stakeholders. Journal of Environmental Management 257, 109983. https://doi.org/10.1016/j.jenvman.2019.109983

Requier, F., Leonhardt, S.D. (2020) Beyond flowers: Including non-floral resources in bee conservation schemes. Journal of Insect Conservation 24, 5-16. https://doi.org/10.1007/s10841-019-00206-1

Requier, F., Rome, Q., Villemant, C., Henry, M. (2020) A biodiversity-friendly method to mitigate the invasive Asian hornet’s impact on European honey bees. Journal of Pest Science 93, 1-9. https://doi.org/10.1007/s10340-019-01159-9

Requier, F., Paillet, Y., Laroche, F., Rutschmann, B., Zhang, J., Lombardi, F., Svoboda, F., Steffan-Dewenter, I. (2020) Contribution of European forests to safeguard wild honey bee populations. Conservation Letters, 13, e12693. https://doi.org/10.1111/conl.12693

[2019]

Requier, F. (2019) Bee colony health indicators: synthesis and future directions. CAB reviews 14, 1-13. https://doi.org/10.1079/PAVSNNR201914056

Requier, F. & Crewe, R.M. (2019) Learning from wild honey bees. Trends in Ecology & Evolution 34(11), 967-968.https://doi.org/10.1016/j.tree.2019.08.002

Pietrantuono, A.L., Requier, F., Fernández-Arhex, V., Winter, J., Huerta, G., Guerrieri, F. (2019) Honeybees generalize among pollen scents from plants flowering in the same seasonal period. Journal of Experimental Biology https://doi.org/10.1242/jeb.201335

Requier, F., Garnery, L., Kohl, P.L., Njovu, H.K., Pirk, C.W.W., Crewe, R.M., Steffan-Dewenter, I. (2019) The conservation of native honey bees is crucial. Trends in Ecology & Evolution 34(9), 789-798.https://doi.org/10.1016/j.tree.2019.04.008

Martin E.A., Feit B., Requier F., Friberg H., Jonsson M. (2019) Assessing the resilience of biodiversity-driven functions in agroecosystems under environmental change. Advances in Ecological Research 60, 59-123.https://doi.org/10.1016/bs.aecr.2019.02.003

Requier, F., Rome, Q., Chiron, G., Decante, D., Marion, S., Ménard, M., Muller, F., Villemant, C., Henry, M. (2019) Predation of the invasive Asian hornet-induced risk on honeybee colony collapse affects foraging activity and survival probability of honey bees in Western Europe. Journal of Pest Science 92(2), 567-578. https://doi.org/10.1007/s10340-018-1063-0

Prado, A., Pioz, M., Vidau, C., Requier, F., Brunet, J.L., Jury, M., Le Conte, Y., Alaux, C. (2019) Exposure to pollen-bound pesticide mixtures induces longer-lived but less efficient honey bees. Science of the Total Environment 650, 1250-1260. https://doi.org/10.1016/j.scitotenv.2018.09.102

[2018]

Antúnez, K.*, Requier, F.*, Aldea, P., Basualdo, M., Branchiccela, B., Calderón, R., Correa, A., Delgado Canedo, A., Fuselli, S., Morales, C., Pérez, E., Plischuk, S., Porrini, M., Goncalves, L.S., Tapia, J.M., Torres, A., Velarde, R., Invernizzi, C. (2018) SOLATINA: a Latin-American Bee Research Association to foster the interactions between scientists and coordinate large-scale research programs. Bee World 95(4), 124-127. https://doi.org/10.1080/0005772X.2018.1508813 [*Equal contribution]

Requier, F., Antúnez, K., Morales, C.L., Aldea Sánchez, P., Castilhos, D., Garrido, M., Giacobino, A., Reynaldi, F.J., Rosso Londoño, J.M., Santos, E., Garibaldi, L.A. (2018) Trends in beekeeping and honey bee colony losses in Latin America. Journal of Apicultural Research 57(5), 657-662. https://doi.org/10.1080/00218839.2018.1494919

Garibaldi, L.A., Andersson, G.K.S., Requier, F., Fijen, T.P.M., Hipólito, J., Kleijn, D., Pérez-Méndez, N, Rollin, O. (2018) Complementarity and synergisms among ecosystem services supporting crop yield. Global Food Security 17, 38-47. https://doi.org/10.1016/j.gfs.2018.03.006

Agüero J.I., Rollin O., Torretta J.P., Aizen M.A., Requier F., Garibaldi L.A. (2018). Honeybee impact on plants and wild bees in natural habitats. Ecosistemas 27(2): 60-69. https://doi.org/10.7818/ECOS.1365

Requier, F., Andersson, G.K.S., Oddi, F., Garcia, G., Garibaldi, L.A. (2018) Perspectives from the survey of honeybee colony losses 2015-16 in Argentina. Bee World 5(1), 9-12. https://doi.org/10.1080/0005772X.2018.1413620

[2017]

Garibaldi L.A., Requier F., Rollin O., Andersson G.K.S. (2017) Towards an integrated species and habitat management of crop pollination. Current Opinion in Insect Science21, 1-10. https://doi.org/10.1016/j.cois.2017.05.016  

Requier, F., Odoux, J.F., Henry, M., Bretagnolle, V. (2017) The carry-over effects of pollen shortage decrease the survival of honeybee colonies in farmlands. Journal of Applied Ecology 54(4), 1161-1170. https://doi.org/10.1111/1365-2664.12836

Henry, M., Becher, M.A., Osborne, J.L., Kennedy, P.J., Aupinel, P., Bretagnolle, V., Brun, F., Grimm, V., Horn, J., Requier, F. (2017) Predictive systems models can help elucidate bee declines driven by multiple combined stressors. Apidologie 48, 328-339. https://doi.org/10.1007/s13592-016-0476-0

[2016]

Requier, F., Garcia, G., Andersson, G.K.S., Oddi, F., Garibaldi, L.A. (2016) Honey bee colony losses: what’s happening in South America? American Bee Journal 156(11), 1247-1250.

Requier, F., Chiron, G. & Ménard, M. (2016) Décrypter le vol des abeilles en 3D. Biofutur 380, 48-53.

Le Féon, V., Henry, M., Guilbaud, L., Coiffait-Gombault, C., Dufrêne, E., Kolodziejczyk, E., Kuhlmann, M., Requier, F., Vaissière, B.E. (2016) An expert-assisted citizen science program provides general patterns on bee assemblages at a national scale. Journal of Insect Conservation 20, 905-918. https://doi.org/10.1007/s10841-016-9927-1

Decourtye, A., Vidau, C., Rollin, O., Requier, F., Rüger, C., Allier, F., Le Féon, V., Kretschmar, A., Devilliers, J., Henry, M., Odoux, J.F. (2016) Fréquentation des cultures par les abeilles mellifères et sauvages : synthèse des connaissances pour réduire le risque d’intoxication aux pesticides. Cahiers Agricultures 25(4), 44001. https://doi.org/10.1051/cagri/2016025

[2015]

Requier, F., Odoux, J. F., Tamic, T., Moreau, N., Henry, M., Decourtye, A., Bretagnolle, V. (2015) Honey-bee diet in intensive farmland habitats reveals an unexpectedly high flower richness and a critical role of weeds. Ecological Applications 25, 881-890. https://doi.org/10.1890/14-1011.1 Highly cited (>130 citations)

Requier, F., Odoux, J.F., Tamic, T., Moreau, N., Henry, M., Decourtye, A., Bretagnolle, V. (2015) Floral resources used by honey bees in agricultural landscapes. Bulletin of the Ecological Society of America 96, 487-491. https://doi.org/10.1890/0012-9623-96.3.487

Requier, F. (2015) Ecologie des abeilles mellifères en paysage agricole intensif: le prix cache d’une ressource florale fluctuante. Bulletin de la Société Entomologique de France 120, 121-127.

[2014]

Requier, F., Henry, M., Decourtye, A. (2014) Les puces RFID volent au secours des abeilles. Biofutur 357, 46-51.

Henry, M., Bertrand, C., Le Féon, V., Requier, F., Odoux, J.F., Aupinel, P., Bretagnolle, V., Decourtye, A. (2014) Pesticide risk assessment in free-ranging bees is weather and landscape dependent. Nature Communications 5, 4359. https://doi.org/10.1038/ncomms5359

Bailey, S., Requier, F., Nusillard, B., Potts, S. G., Roberts, S., Bouget, C. (2014) Distance from forest edge affects bee pollinators in oilseed rape fields. Ecology and Evolution 4(4), 370-380. https://doi.org/10.1002/ece3.924

Odoux, J.F., Aupinel, P., Gateff, S., Requier, F., Henry, M., Bretagnolle, V. (2014) ECOBEE: a tool for long-term bee colony monitoring at landscape scale in West European intensive agrosystems. Journal of Apicultural Research 53, 57-66. https://doi.org/10.3896/IBRA.1.53.1.05

[2013]

Chiron, G., Gomez-Krämer, P., Menard, M., Requier, F. (2013) 3D Tracking of Honeybees Enhanced by Environmental Context. Lecture Notes in Computer Science, 8156, 702-711. https://doi.org/10.1007/978-3-642-41181-6_71

Decourtye, A., Gayrard, M., Chabert, A., Requier, F., Rollin, O., Odoux, J.F., Henry, M., Allier, F., Cerrutti, N., Chaigne, G., Petrequin, P., Plantureux, S., Gaujour, E., Emonet, E., Bockstaller, C., Aupinel, P., Michel, N., Bretagnolle, V. (2013) Projet Polinov, épisode 2 : vers des systèmes de cultures favorables aux abeilles. Phytoma 667, 11-14.

Decourtye, A., Gayrard, M., Chabert, A., Requier, F., Rollin, O., Odoux, J.F., Henry, M., Allier, F., Cerrutti, N., Chaigne, G., Petrequin, P., Plantureux, S., Gaujour, E., Emonet, E., Bockstaller, C., Aupinel, P., Michel, N., Bretagnolle, V. (2013) Projet Polinov, épisode 1 : pour des systèmes de cultures favorables aux abeilles. Phytoma 666, 41-46.

[2012]

Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A. (2012) Response to Comment on “A Common Pesticide Decreases Foraging Success and Survival in Honey Bees”. Science 337, 1453. https://doi.org/10.1126/science.1224930

Henry, M., Beguin, M., Requier, F., Rollin, O., Odoux, J. F., Aupinel, P., Aptel, J., Tchamitchian, S., Decourtye, A. (2012) A common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science 336, 348-350. https://doi.org/10.1126/science.1215039

Book chapters

Requier, F. (2019) Chapter 9: Honey Bees in Latin America.In: Ilyasov, R. & Kwon, H.W. (Eds) Phylogenetics of Bees, Taylor & Francis Group, p. 206-221.

Bailey, S., Requier, F., Lagarde, N., Nusillard, B., Bouget, C. (2015) Chapitre 9 : Effets des éléments boisés sur les abeilles sauvages dans différents paysages agricoles. Étude des lisières forêt-colza et forêt-verger sur les abeilles sauvages dans différents paysages agricoles. In : Maire E. & Laffly D. (Eds) Abeilles et paysages : Enjeux apicoles et agricoles, Quae editions, p. 127-140.

Henry, M., Odoux, J.F., Requier, F., Rollin, O., Tamic, T., Toullet, C., Le Mogne, C., Peyra, E., Decourtye, A., Aupinel, P., Bretagnolle, V. (2015) Chapitre 7 : Abeilles domestiques dans une plaine céréalière intensive : la composition du paysage influence la dynamique des colonies. In : Maire E. & Laffly D. (Eds) Abeilles et paysages : Enjeux apicoles et agricoles, Quae editions, p. 115-119.

Marie, Merle

PHD subject:

Role of the chemosensory receptors in the domiciliation process of Chagas disease vectors : case of Rhodnius species
Triatominae are hematophagous bugs that are vectors of Trypanosoma cruzi, the causative agent of Chagas disease, endemic in Latin America. In the wild, Rhodnius species mainly infested palms and feed on a wide range of vertebrate hosts that find refuge in this habitat. However, some Rhodnius species have left their natural habitat (sylvatic habitat) to come into close contact with humans, colonizing their homes, and potentially transmitting T. cruzi to humans. The process of domiciliation describes the transition of bugs from the sylvatic to the anthropised environment. For some species, domiciliation appears as a one-way process. Thus R. prolixus is described as almost exclusively domiciliary. Other species are considered to be in the process of domiciliation, some populations living in a sylvatic environment and others in an anthropised one. However, the domiciliation process does not seem to occur for all species. Some species visit sporadically the dwellings but do not remain there, others seem exclusively sylvatic. Different population genetic studies have shown that domiciliary and sylvatic bug populations of the same geographic area are genetically differentiated and that domiciliary populations result from one or more founder effects from sylvatic habitats. In homes, bugs find very favorable conditions for their development. Environmental conditions are buffered, and food resources are assured. This domiciliation process involves change of habitat and host, the main source of food in the houses being human. Our hypothesis is that this domiciliation process involves the chemosensory system, a system that allows organisms to interact with their environment. The chemosensory genes belong to multigene families whose evolutionary dynamics are rapid and at the origin of changes in sensory sensitivity. These changes could be involved in the adaptation to a new environment, in this case the domiciliary environment for blood-sucking bugs.